Trajectory Prediction
Trajectory prediction focuses on forecasting the future movement of objects, particularly crucial for autonomous systems like self-driving cars and robots. Current research emphasizes improving prediction accuracy and robustness, especially in complex, uncertain environments, using diverse model architectures such as transformers, graph neural networks, and diffusion models, often incorporating multimodal data (e.g., images, LiDAR, maps) and addressing challenges like uncertainty quantification and out-of-distribution generalization. This field is vital for enhancing the safety and efficiency of autonomous systems and has significant implications for various applications, including robotics, traffic management, and assistive technologies.
Papers
Importance is in your attention: agent importance prediction for autonomous driving
Christopher Hazard, Akshay Bhagat, Balarama Raju Buddharaju, Zhongtao Liu, Yunming Shao, Lu Lu, Sammy Omari, Henggang Cui
GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning
Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, Siheng Chen