Transformer Architecture
Transformer architectures are a dominant deep learning paradigm, primarily known for their self-attention mechanism enabling efficient processing of sequential data like text and time series. Current research focuses on addressing the quadratic time complexity of self-attention through alternative architectures (e.g., state space models like Mamba) and optimized algorithms (e.g., local attention, quantized attention), as well as exploring the application of transformers to diverse domains including computer vision, robotics, and blockchain technology. These efforts aim to improve the efficiency, scalability, and interpretability of transformers, leading to broader applicability and enhanced performance across numerous fields.
Papers
Long-Range Transformer Architectures for Document Understanding
Thibault Douzon, Stefan Duffner, Christophe Garcia, Jérémy Espinas
SparseSwin: Swin Transformer with Sparse Transformer Block
Krisna Pinasthika, Blessius Sheldo Putra Laksono, Riyandi Banovbi Putera Irsal, Syifa Hukma Shabiyya, Novanto Yudistira