Transformer Based Model
Transformer-based models are a class of neural networks achieving state-of-the-art results across diverse fields by leveraging self-attention mechanisms to capture long-range dependencies in sequential data. Current research focuses on addressing limitations such as quadratic computational complexity for long sequences, leading to the development of alternative architectures like Mamba and modifications such as LoRA for efficient adaptation and inference. These advancements are significantly impacting various applications, from speech recognition and natural language processing to computer vision and time-series forecasting, by improving both accuracy and efficiency on resource-constrained devices.
Papers
Length Extrapolation of Transformers: A Survey from the Perspective of Positional Encoding
Liang Zhao, Xiachong Feng, Xiaocheng Feng, Weihong Zhong, Dongliang Xu, Qing Yang, Hongtao Liu, Bing Qin, Ting Liu
Learning the Dynamic Correlations and Mitigating Noise by Hierarchical Convolution for Long-term Sequence Forecasting
Zhihao Yu, Liantao Ma, Yasha Wang, Junfeng Zhao