Uncertainty Quantification
Uncertainty quantification (UQ) aims to assess and represent the confidence in predictions made by machine learning models, crucial for high-stakes applications where reliable predictions are paramount. Current research focuses on developing robust UQ methods, particularly addressing biases in predictions and efficiently quantifying uncertainty in large language models and deep neural networks, often employing techniques like conformal prediction, Bayesian methods, and ensemble learning. The ability to reliably quantify uncertainty enhances the trustworthiness and applicability of machine learning across diverse fields, from healthcare diagnostics and autonomous driving to climate modeling and drug discovery.
Papers
Deep Ensembles to Improve Uncertainty Quantification of Statistical Downscaling Models under Climate Change Conditions
Jose González-Abad, Jorge Baño-Medina
Uncertainty Aware Neural Network from Similarity and Sensitivity
H M Dipu Kabir, Subrota Kumar Mondal, Sadia Khanam, Abbas Khosravi, Shafin Rahman, Mohammad Reza Chalak Qazani, Roohallah Alizadehsani, Houshyar Asadi, Shady Mohamed, Saeid Nahavandi, U Rajendra Acharya