Unified Framework
Unified frameworks in machine learning aim to consolidate diverse approaches to a specific problem into a single, coherent architecture, improving efficiency and facilitating comparative analysis. Current research focuses on developing such frameworks for various tasks, including recommendation systems, video understanding, and natural language processing, often leveraging transformer models, diffusion models, and recurrent neural networks. These unified approaches enhance model performance, enable more robust comparisons between methods, and offer improved interpretability and controllability, ultimately advancing both theoretical understanding and practical applications across numerous domains.
Papers
UnLoc: A Unified Framework for Video Localization Tasks
Shen Yan, Xuehan Xiong, Arsha Nagrani, Anurag Arnab, Zhonghao Wang, Weina Ge, David Ross, Cordelia Schmid
UGSL: A Unified Framework for Benchmarking Graph Structure Learning
Bahare Fatemi, Sami Abu-El-Haija, Anton Tsitsulin, Mehran Kazemi, Dustin Zelle, Neslihan Bulut, Jonathan Halcrow, Bryan Perozzi