Unified Framework
Unified frameworks in machine learning aim to consolidate diverse approaches to a specific problem into a single, coherent architecture, improving efficiency and facilitating comparative analysis. Current research focuses on developing such frameworks for various tasks, including recommendation systems, video understanding, and natural language processing, often leveraging transformer models, diffusion models, and recurrent neural networks. These unified approaches enhance model performance, enable more robust comparisons between methods, and offer improved interpretability and controllability, ultimately advancing both theoretical understanding and practical applications across numerous domains.
Papers
A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs
Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, Benjamin M. Gyori
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
Zhaowen Li, Yousong Zhu, Fan Yang, Wei Li, Chaoyang Zhao, Yingying Chen, Zhiyang Chen, Jiahao Xie, Liwei Wu, Rui Zhao, Ming Tang, Jinqiao Wang