Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) tackles the challenge of training machine learning models on labeled data from one domain (source) and applying them effectively to unlabeled data from a different but related domain (target). Current research focuses on improving the robustness and efficiency of UDA, exploring techniques like adversarial training, self-training, and representation learning using architectures such as convolutional neural networks and vision transformers. These advancements are crucial for various applications, including medical image analysis, remote sensing, and time series classification, where obtaining sufficient labeled data for each domain is often impractical or expensive. The development of standardized evaluation frameworks and the exploration of efficient UDA methods for resource-constrained environments are also significant current trends.
Papers
Adapting to Latent Subgroup Shifts via Concepts and Proxies
Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai
Learning List-Level Domain-Invariant Representations for Ranking
Ruicheng Xian, Honglei Zhuang, Zhen Qin, Hamed Zamani, Jing Lu, Ji Ma, Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky