Upper Bound

Upper bounds, in the context of machine learning and optimization, represent theoretical limits on performance metrics like generalization error, regret, or risk. Current research focuses on deriving tighter, data-dependent upper bounds for various models, including convolutional neural networks, Gaussian processes, and graph neural networks, often employing techniques from PAC-Bayesian theory, information theory, and convex optimization. These improved bounds are crucial for evaluating algorithm performance, designing more efficient algorithms, and providing guarantees on the reliability and safety of machine learning systems in applications ranging from medical imaging to robotics. The development of tighter bounds directly impacts the design and analysis of algorithms, leading to more robust and efficient solutions.

Papers