Vision Language
Vision-language research focuses on developing models that understand and integrate visual and textual information, aiming to bridge the gap between computer vision and natural language processing. Current research emphasizes improving model robustness against adversarial attacks, enhancing efficiency through techniques like token pruning and parameter-efficient fine-tuning, and addressing challenges in handling noisy data and complex reasoning tasks. This field is significant because it enables advancements in various applications, including image captioning, visual question answering, and medical image analysis, ultimately impacting fields ranging from healthcare to autonomous driving.
Papers
LLaVA-VSD: Large Language-and-Vision Assistant for Visual Spatial Description
Yizhang Jin, Jian Li, Jiangning Zhang, Jianlong Hu, Zhenye Gan, Xin Tan, Yong Liu, Yabiao Wang, Chengjie Wang, Lizhuang Ma
UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling
Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
MMInstruct: A High-Quality Multi-Modal Instruction Tuning Dataset with Extensive Diversity
Yangzhou Liu, Yue Cao, Zhangwei Gao, Weiyun Wang, Zhe Chen, Wenhai Wang, Hao Tian, Lewei Lu, Xizhou Zhu, Tong Lu, Yu Qiao, Jifeng Dai
Accelerating Pre-training of Multimodal LLMs via Chain-of-Sight
Ziyuan Huang, Kaixiang Ji, Biao Gong, Zhiwu Qing, Qinglong Zhang, Kecheng Zheng, Jian Wang, Jingdong Chen, Ming Yang