Visual Representation
Visual representation research focuses on creating effective ways for computers to understand and utilize visual information, primarily aiming to bridge the gap between raw image data and higher-level semantic understanding. Current research emphasizes developing robust and efficient visual representations through various techniques, including contrastive learning, masked image modeling, and the integration of vision models with large language models (LLMs), often employing transformer-based architectures. These advancements have significant implications for numerous applications, such as robotic control, medical image analysis, and improving the capabilities of multimodal AI systems.
Papers
An Empirical Study of Autoregressive Pre-training from Videos
Jathushan Rajasegaran, Ilija Radosavovic, Rahul Ravishankar, Yossi Gandelsman, Christoph Feichtenhofer, Jitendra Malik
Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning
Xueyi Ke, Satoshi Tsutsui, Yayun Zhang, Bihan Wen
Soft Tensor Product Representations for Fully Continuous, Compositional Visual Representations
Bethia Sun, Maurice Pagnucco, Yang Song
Florence-VL: Enhancing Vision-Language Models with Generative Vision Encoder and Depth-Breadth Fusion
Jiuhai Chen, Jianwei Yang, Haiping Wu, Dianqi Li, Jianfeng Gao, Tianyi Zhou, Bin Xiao