Visual Representation
Visual representation research focuses on creating effective ways for computers to understand and utilize visual information, primarily aiming to bridge the gap between raw image data and higher-level semantic understanding. Current research emphasizes developing robust and efficient visual representations through various techniques, including contrastive learning, masked image modeling, and the integration of vision models with large language models (LLMs), often employing transformer-based architectures. These advancements have significant implications for numerous applications, such as robotic control, medical image analysis, and improving the capabilities of multimodal AI systems.
Papers
DVF: Advancing Robust and Accurate Fine-Grained Image Retrieval with Retrieval Guidelines
Xin Jiang, Hao Tang, Rui Yan, Jinhui Tang, Zechao Li
CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
Sachin Mehta, Maxwell Horton, Fartash Faghri, Mohammad Hossein Sekhavat, Mahyar Najibi, Mehrdad Farajtabar, Oncel Tuzel, Mohammad Rastegari