Wild Challenge
"Wild" in machine learning research refers to the challenge of applying models trained on curated datasets to real-world, unstructured data, characterized by noise, variability, and ambiguity. Current research focuses on adapting existing models (like NeRFs, transformers, and convolutional networks) and developing new architectures to handle this complexity, often incorporating techniques like contrastive learning, multimodal fusion, and test-time adaptation. This research is crucial for bridging the gap between laboratory settings and practical applications, improving the robustness and reliability of AI systems in diverse and unpredictable environments. The ultimate goal is to create more generalizable and robust AI systems capable of functioning effectively in the real world.
Papers
Topic Segmentation in the Wild: Towards Segmentation of Semi-structured & Unstructured Chats
Reshmi Ghosh, Harjeet Singh Kajal, Sharanya Kamath, Dhuri Shrivastava, Samyadeep Basu, Soundararajan Srinivasan
VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild
Kun Cheng, Xiaodong Cun, Yong Zhang, Menghan Xia, Fei Yin, Mingrui Zhu, Xuan Wang, Jue Wang, Nannan Wang
MagicPony: Learning Articulated 3D Animals in the Wild
Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, Andrea Vedaldi
GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
Chao Wang, Ana Serrano, Xingang Pan, Bin Chen, Hans-Peter Seidel, Christian Theobalt, Karol Myszkowski, Thomas Leimkuehler