Wild Challenge
"Wild" in machine learning research refers to the challenge of applying models trained on curated datasets to real-world, unstructured data, characterized by noise, variability, and ambiguity. Current research focuses on adapting existing models (like NeRFs, transformers, and convolutional networks) and developing new architectures to handle this complexity, often incorporating techniques like contrastive learning, multimodal fusion, and test-time adaptation. This research is crucial for bridging the gap between laboratory settings and practical applications, improving the robustness and reliability of AI systems in diverse and unpredictable environments. The ultimate goal is to create more generalizable and robust AI systems capable of functioning effectively in the real world.
Papers
Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based Baseline
Xianda Guo, Zheng Zhu, Tian Yang, Beibei Lin, Junjie Huang, Jiankang Deng, Guan Huang, Jie Zhou, Jiwen Lu
Speaker Recognition in the Wild
Neeraj Chhimwal, Anirudh Gupta, Rishabh Gaur, Harveen Singh Chadha, Priyanshi Shah, Ankur Dhuriya, Vivek Raghavan