Paper ID: 2112.04329
JABER and SABER: Junior and Senior Arabic BERt
Abbas Ghaddar, Yimeng Wu, Ahmad Rashid, Khalil Bibi, Mehdi Rezagholizadeh, Chao Xing, Yasheng Wang, Duan Xinyu, Zhefeng Wang, Baoxing Huai, Xin Jiang, Qun Liu, Philippe Langlais
Language-specific pre-trained models have proven to be more accurate than multilingual ones in a monolingual evaluation setting, Arabic is no exception. However, we found that previously released Arabic BERT models were significantly under-trained. In this technical report, we present JABER and SABER, Junior and Senior Arabic BERt respectively, our pre-trained language model prototypes dedicated for Arabic. We conduct an empirical study to systematically evaluate the performance of models across a diverse set of existing Arabic NLU tasks. Experimental results show that JABER and SABER achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation, as well as on a well-established NER benchmark.
Submitted: Dec 8, 2021