Paper ID: 2112.10360
May the Force Be with Your Copy Mechanism: Enhanced Supervised-Copy Method for Natural Language Generation
Sanghyuk Choi, Jeong-in Hwang, Hyungjong Noh, Yeonsoo Lee
Recent neural sequence-to-sequence models with a copy mechanism have achieved remarkable progress in various text generation tasks. These models addressed out-of-vocabulary problems and facilitated the generation of rare words. However, the identification of the word which needs to be copied is difficult, as observed by prior copy models, which suffer from incorrect generation and lacking abstractness. In this paper, we propose a novel supervised approach of a copy network that helps the model decide which words need to be copied and which need to be generated. Specifically, we re-define the objective function, which leverages source sequences and target vocabularies as guidance for copying. The experimental results on data-to-text generation and abstractive summarization tasks verify that our approach enhances the copying quality and improves the degree of abstractness.
Submitted: Dec 20, 2021