Paper ID: 2202.05465
WAD-CMSN: Wasserstein Distance based Cross-Modal Semantic Network for Zero-Shot Sketch-Based Image Retrieval
Guanglong Xu, Zhensheng Hu, Jia Cai
Zero-shot sketch-based image retrieval (ZSSBIR), as a popular studied branch of computer vision, attracts wide attention recently. Unlike sketch-based image retrieval (SBIR), the main aim of ZSSBIR is to retrieve natural images given free hand-drawn sketches that may not appear during training. Previous approaches used semantic aligned sketch-image pairs or utilized memory expensive fusion layer for projecting the visual information to a low dimensional subspace, which ignores the significant heterogeneous cross-domain discrepancy between highly abstract sketch and relevant image. This may yield poor performance in the training phase. To tackle this issue and overcome this drawback, we propose a Wasserstein distance based cross-modal semantic network (WAD-CMSN) for ZSSBIR. Specifically, it first projects the visual information of each branch (sketch, image) to a common low dimensional semantic subspace via Wasserstein distance in an adversarial training manner. Furthermore, identity matching loss is employed to select useful features, which can not only capture complete semantic knowledge, but also alleviate the over-fitting phenomenon caused by the WAD-CMSN model. Experimental results on the challenging Sketchy (Extended) and TU-Berlin (Extended) datasets indicate the effectiveness of the proposed WAD-CMSN model over several competitors.
Submitted: Feb 11, 2022