Paper ID: 2202.07308
HAA4D: Few-Shot Human Atomic Action Recognition via 3D Spatio-Temporal Skeletal Alignment
Mu-Ruei Tseng, Abhishek Gupta, Chi-Keung Tang, Yu-Wing Tai
Human actions involve complex pose variations and their 2D projections can be highly ambiguous. Thus 3D spatio-temporal or 4D (i.e., 3D+T) human skeletons, which are photometric and viewpoint invariant, are an excellent alternative to 2D+T skeletons/pixels to improve action recognition accuracy. This paper proposes a new 4D dataset HAA4D which consists of more than 3,300 RGB videos in 300 human atomic action classes. HAA4D is clean, diverse, class-balanced where each class is viewpoint-balanced with the use of 4D skeletons, in which as few as one 4D skeleton per class is sufficient for training a deep recognition model. Further, the choice of atomic actions makes annotation even easier, because each video clip lasts for only a few seconds. All training and testing 3D skeletons in HAA4D are globally aligned, using a deep alignment model to the same global space, making each skeleton face the negative z-direction. Such alignment makes matching skeletons more stable by reducing intraclass variations and thus with fewer training samples per class needed for action recognition. Given the high diversity and skeletal alignment in HAA4D, we construct the first baseline few-shot 4D human atomic action recognition network without bells and whistles, which produces comparable or higher performance than relevant state-of-the-art techniques relying on embedded space encoding without explicit skeletal alignment, using the same small number of training samples of unseen classes.
Submitted: Feb 15, 2022