Paper ID: 2203.03543
RNN Transducers for Nested Named Entity Recognition with constraints on alignment for long sequences
Hagen Soltau, Izhak Shafran, Mingqiu Wang, Laurent El Shafey
Popular solutions to Named Entity Recognition (NER) include conditional random fields, sequence-to-sequence models, or utilizing the question-answering framework. However, they are not suitable for nested and overlapping spans with large ontologies and for predicting the position of the entities. To fill this gap, we introduce a new model for NER task -- an RNN transducer (RNN-T). These models are trained using paired input and output sequences without explicitly specifying the alignment between them, similar to other seq-to-seq models. RNN-T models learn the alignment using a loss function that sums over all alignments. In NER tasks, however, the alignment between words and target labels are available from the human annotations. We propose a fixed alignment RNN-T model that utilizes the given alignment, while preserving the benefits of RNN-Ts such as modeling output dependencies. As a more general case, we also propose a constrained alignment model where users can specify a relaxation of the given input alignment and the model will learn an alignment within the given constraints. In other words, we propose a family of seq-to-seq models which can leverage alignments between input and target sequences when available. Through empirical experiments on a challenging real-world medical NER task with multiple nested ontologies, we demonstrate that our fixed alignment model outperforms the standard RNN-T model, improving F1-score from 0.70 to 0.74.
Submitted: Feb 8, 2022