Paper ID: 2203.04551
Multi-Objective Multi-Agent Planning for Discovering and Tracking Multiple Mobile Objects
Hoa Van Nguyen, Ba-Ngu Vo, Ba-Tuong Vo, Hamid Rezatofighi, Damith C. Ranasinghe
We consider the online planning problem for a team of agents to discover and track an unknown and time-varying number of moving objects from onboard sensor measurements with uncertain measurement-object origins. Since the onboard sensors have a limited field-of-view, the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new information-based multi-objective multi-agent control problem, cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, which admits low-cost suboptimal solutions via greedy search with a tight optimality bound. The resulting planning algorithm has a linear complexity in the number of objects and measurements across the sensors, and quadratic in the number of agents. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.
Submitted: Mar 9, 2022