Paper ID: 2203.05808
Font Shape-to-Impression Translation
Masaya Ueda, Akisato Kimura, Seiichi Uchida
Different fonts have different impressions, such as elegant, scary, and cool. This paper tackles part-based shape-impression analysis based on the Transformer architecture, which is able to handle the correlation among local parts by its self-attention mechanism. This ability will reveal how combinations of local parts realize a specific impression of a font. The versatility of Transformer allows us to realize two very different approaches for the analysis, i.e., multi-label classification and translation. A quantitative evaluation shows that our Transformer-based approaches estimate the font impressions from a set of local parts more accurately than other approaches. A qualitative evaluation then indicates the important local parts for a specific impression.
Submitted: Mar 11, 2022