Paper ID: 2203.06498

The worst of both worlds: A comparative analysis of errors in learning from data in psychology and machine learning

Jessica Hullman, Sayash Kapoor, Priyanka Nanayakkara, Andrew Gelman, Arvind Narayanan

Recent arguments that machine learning (ML) is facing a reproducibility and replication crisis suggest that some published claims in ML research cannot be taken at face value. These concerns inspire analogies to the replication crisis affecting the social and medical sciences. They also inspire calls for the integration of statistical approaches to causal inference and predictive modeling. A deeper understanding of what reproducibility concerns in supervised ML research have in common with the replication crisis in experimental science puts the new concerns in perspective, and helps researchers avoid "the worst of both worlds," where ML researchers begin borrowing methodologies from explanatory modeling without understanding their limitations and vice versa. We contribute a comparative analysis of concerns about inductive learning that arise in causal attribution as exemplified in psychology versus predictive modeling as exemplified in ML. We identify themes that re-occur in reform discussions, like overreliance on asymptotic theory and non-credible beliefs about real-world data generating processes. We argue that in both fields, claims from learning are implied to generalize outside the specific environment studied (e.g., the input dataset or subject sample, modeling implementation, etc.) but are often impossible to refute due to undisclosed sources of variance in the learning pipeline. In particular, errors being acknowledged in ML expose cracks in long-held beliefs that optimizing predictive accuracy using huge datasets absolves one from having to consider a true data generating process or formally represent uncertainty in performance claims. We conclude by discussing risks that arise when sources of errors are misdiagnosed and the need to acknowledge the role of human inductive biases in learning and reform.

Submitted: Mar 12, 2022