Paper ID: 2203.14470

Soft robotic hand with finger-bending/friction-reduction switching mechanism through 1-degree-of-freedom flow control

Toshihiro Nishimura, Kensuke Shimizu, Seita Nojiri, Kenjiro Tadakuma, Yosuke Suzuki, Tokuo Tsuji, Tetsuyou Watanabe

This paper proposes a novel pneumatic soft robotic hand that incorporates a mechanism that can switch the airflow path using a single airflow control. The developed hand can control the finger motion and operate the surface friction variable mechanism. In the friction variable mechanism, a lubricant is injected onto the high-friction finger surface to reduce surface friction. To inject the lubrication using a positive-pressure airflow, the Venturi effect is applied. The design and evaluation of the airflow-path switching and friction variable mechanisms are described. Moreover, the entire design of a soft robotic hand equipped with these mechanisms is presented. The performance was validated through grasping, placing, and manipulation tests.

Submitted: Mar 28, 2022