Paper ID: 2203.16419

Intelligent Blockage Prediction and Proactive Handover for Seamless Connectivity in Vision-Aided 5G/6G UDNs

Mohammad Al-Quraan, Ahsan Khan, Lina Mohjazi, Anthony Centeno, Ahmed Zoha, Muhammad Ali Imran

The upsurge in wireless devices and real-time service demands force the move to a higher frequency spectrum. Millimetre-wave (mmWave) and terahertz (THz) bands combined with the beamforming technology offer significant performance enhancements for ultra-dense networks (UDNs). Unfortunately, shrinking cell coverage and severe penetration loss experienced at higher spectrum render mobility management a critical issue in UDNs, especially optimizing beam blockages and frequent handover (HO). Mobility management challenges have become prevalent in city centres and urban areas. To address this, we propose a novel mechanism driven by exploiting wireless signals and on-road surveillance systems to intelligently predict possible blockages in advance and perform timely HO. This paper employs computer vision (CV) to determine obstacles and users' location and speed. In addition, this study introduces a new HO event, called block event {BLK}, defined by the presence of a blocking object and a user moving towards the blocked area. Moreover, the multivariate regression technique predicts the remaining time until the user reaches the blocked area, hence determining best HO decision. Compared to typical wireless networks without blockage prediction, simulation results show that our BLK detection and PHO algorithm achieves 40\% improvement in maintaining user connectivity and the required quality of experience (QoE).

Submitted: Feb 21, 2022