Paper ID: 2204.00493
A Global Modeling Approach for Load Forecasting in Distribution Networks
Miha Grabner, Yi Wang, Qingsong Wen, Boštjan Blažič, Vitomir Štruc
Efficient load forecasting is needed to ensure better observability in the distribution networks, whereas such forecasting is made possible by an increasing number of smart meter installations. Because distribution networks include a large amount of different loads at various aggregation levels, such as individual consumers, transformer stations and feeders loads, it is impractical to develop individual (or so-called local) forecasting models for each load separately. Furthermore, such local models ignore the strong dependencies between different loads that might be present due to their spatial proximity and the characteristics of the distribution network. To address these issues, this paper proposes a global modeling approach based on deep learning for efficient forecasting of a large number of loads in distribution networks. In this way, the computational burden of training a large amount of local forecasting models can be largely reduced, and the cross-series information shared among different loads can be utilized. Additionally, an unsupervised localization mechanism and optimal ensemble construction strategy are also proposed to localize/personalize the forecasting model to different groups of loads and to improve the forecasting accuracy further. Comprehensive experiments are conducted on real-world smart meter data to demonstrate the superiority of the proposed approach compared to competing methods.
Submitted: Apr 1, 2022