Paper ID: 2204.02678

Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves

David Bosch, Ashkan Panahi, Ayca Özcelikkale, Devdatt Dubhash

We compute precise asymptotic expressions for the learning curves of least squares random feature (RF) models with either a separable strongly convex regularization or the $\ell_1$ regularization. We propose a novel multi-level application of the convex Gaussian min max theorem (CGMT) to overcome the traditional difficulty of finding computable expressions for random features models with correlated data. Our result takes the form of a computable 4-dimensional scalar optimization. In contrast to previous results, our approach does not require solving an often intractable proximal operator, which scales with the number of model parameters. Furthermore, we extend the universality results for the training and generalization errors for RF models to $\ell_1$ regularization. In particular, we demonstrate that under mild conditions, random feature models with elastic net or $\ell_1$ regularization are asymptotically equivalent to a surrogate Gaussian model with the same first and second moments. We numerically demonstrate the predictive capacity of our results, and show experimentally that the predicted test error is accurate even in the non-asymptotic regime.

Submitted: Apr 6, 2022