Paper ID: 2204.03083
Audio-Visual Person-of-Interest DeepFake Detection
Davide Cozzolino, Alessandro Pianese, Matthias Nießner, Luisa Verdoliva
Face manipulation technology is advancing very rapidly, and new methods are being proposed day by day. The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world. Our key insight is that each person has specific characteristics that a synthetic generator likely cannot reproduce. Accordingly, we extract audio-visual features which characterize the identity of a person, and use them to create a person-of-interest (POI) deepfake detector. We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity. As a result, when the video and/or audio of a person is manipulated, its representation in the embedding space becomes inconsistent with the real identity, allowing reliable detection. Training is carried out exclusively on real talking-face video; thus, the detector does not depend on any specific manipulation method and yields the highest generalization ability. In addition, our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos. Experiments on a wide variety of datasets confirm that our method ensures a SOTA performance, especially on low quality videos. Code is publicly available on-line at https://github.com/grip-unina/poi-forensics.
Submitted: Apr 6, 2022