Paper ID: 2204.13812

Visualization and Optimization Techniques for High Dimensional Parameter Spaces

Anjul Tyagi

High dimensional parameter space optimization is crucial in many applications. The parameters affecting this performance can be both numerical and categorical in their type. The existing techniques of black-box optimization and visual analytics are good in dealing with numerical parameters but analyzing categorical variables in context of the numerical variables are not well studied. Hence, we propose a novel approach, to create an auto-tuning framework for storage systems optimization combining both direct optimization techniques and visual analytics research. While the optimization algorithm will be the core of the system, visual analytics will provide a guideline with the help of an external agent (expert) to provide crucial hints to narrow down the large search space for the optimization engine. As part of the initial step towards creating an auto-tuning engine for storage systems optimization, we created an Interactive Configuration Explorer \textit{ICE}, which directly addresses the need of analysts to learn how the dependent numerical variable is affected by the parameter settings given multiple optimization objectives. No information is lost as ICE shows the complete distribution and statistics of the dependent variable in context with each categorical variable. Analysts can interactively filter the variables to optimize for certain goals such as achieving a system with maximum performance, low variance, etc. Our system was developed in tight collaboration with a group of systems performance researchers and its final effectiveness was evaluated with expert interviews, a comparative user study, and two case studies. We also discuss our research plan for creating an efficient auto-tuning framework combining black-box optimization and visual analytics for storage systems performance optimization.

Submitted: Apr 28, 2022