Paper ID: 2205.13957

Cycle Label-Consistent Networks for Unsupervised Domain Adaptation

Mei Wang, Weihong Deng

Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution. Previous methods mostly match the distribution between two domains by global or class alignment. However, global alignment methods cannot achieve a fine-grained class-to-class overlap; class alignment methods supervised by pseudo-labels cannot guarantee their reliability. In this paper, we propose a simple yet efficient domain adaptation method, i.e. Cycle Label-Consistent Network (CLCN), by exploiting the cycle consistency of classification label, which applies dual cross-domain nearest centroid classification procedures to generate a reliable self-supervised signal for the discrimination in the target domain. The cycle label-consistent loss reinforces the consistency between ground-truth labels and pseudo-labels of source samples leading to statistically similar latent representations between source and target domains. This new loss can easily be added to any existing classification network with almost no computational overhead. We demonstrate the effectiveness of our approach on MNIST-USPS-SVHN, Office-31, Office-Home and Image CLEF-DA benchmarks. Results validate that the proposed method can alleviate the negative influence of falsely-labeled samples and learn more discriminative features, leading to the absolute improvement over source-only model by 9.4% on Office-31 and 6.3% on Image CLEF-DA.

Submitted: May 27, 2022