Paper ID: 2206.00007
A Cross-City Federated Transfer Learning Framework: A Case Study on Urban Region Profiling
Gaode Chen, Yijun Su, Xinghua Zhang, Anmin Hu, Guochun Chen, Siyuan Feng, Ji Xiang, Junbo Zhang, Yu Zheng
Data insufficiency problems (i.e., data missing and label scarcity) caused by inadequate services and infrastructures or imbalanced development levels of cities have seriously affected the urban computing tasks in real scenarios. Prior transfer learning methods inspire an elegant solution to the data insufficiency, but are only concerned with one kind of insufficiency issue and fail to give consideration to both sides. In addition, most previous cross-city transfer methods overlook inter-city data privacy which is a public concern in practical applications. To address the above challenging problems, we propose a novel Cross-city Federated Transfer Learning framework (CcFTL) to cope with the data insufficiency and privacy problems. Concretely, CcFTL transfers the relational knowledge from multiple rich-data source cities to the target city. Besides, the model parameters specific to the target task are firstly trained on the source data and then fine-tuned to the target city by parameter transfer. With our adaptation of federated training and homomorphic encryption settings, CcFTL can effectively deal with the data privacy problem among cities. We take the urban region profiling as an application of smart cities and evaluate the proposed method with a real-world study. The experiments demonstrate the notable superiority of our framework over several competitive state-of-the-art methods.
Submitted: May 31, 2022