Paper ID: 2206.04716

Gender and Robots: A Literature Review

David Gray Widder

Here, I ask what we can learn about how gender affects how people engage with robots. I review 46 empirical studies of social robots, published 2018 or earlier, which report on the gender of their participants or the perceived or intended gender of the robot, or both, and perform some analysis with respect to either participant or robot gender. From these studies, I find that robots are by default perceived as male, that robots absorb human gender stereotypes, and that men tend to engage with robots more than women. I highlight open questions about how such gender effects may be different in younger participants, and whether one should seek to match the gender of the robot to the gender of the participant to ensure positive interaction outcomes. I conclude by suggesting that future research should: include gender diverse participant pools, include non-binary participants, rely on self-identification for discerning gender rather than researcher perception, control for known covariates of gender, test for different study outcomes with respect to gender, and test whether the robot used was perceived as gendered by participants. I include an appendix with a narrative summary of gender-relevant findings from each of the 46 papers to aid in future literature reviews.

Submitted: Jun 9, 2022