Paper ID: 2206.09607
NLOS Ranging Mitigation with Neural Network Model for UWB Localization
Muhammad Shalihan, Ran Liu, Chau Yuen
Localization of robots is vital for navigation and path planning, such as in cases where a map of the environment is needed. Ultra-Wideband (UWB) for indoor location systems has been gaining popularity over the years with the introduction of low-cost UWB modules providing centimetre-level accuracy. However, in the presence of obstacles in the environment, Non-Line-Of-Sight (NLOS) measurements from the UWB will produce inaccurate results. As low-cost UWB devices do not provide channel information, we propose an approach to decide if a measurement is within Line-Of-Sight (LOS) or not by using some signal strength information provided by low-cost UWB modules through a Neural Network (NN) model. The result of this model is the probability of a ranging measurement being LOS which was used for localization through the Weighted-Least-Square (WLS) method. Our approach improves localization accuracy by 16.93% on the lobby testing data and 27.97% on the corridor testing data using the NN model trained with all extracted inputs from the office training data.
Submitted: Jun 20, 2022