Paper ID: 2206.13475

Thermodynamics-inspired Explanations of Artificial Intelligence

Shams Mehdi, Pratyush Tiwary

In recent years, predictive machine learning methods have gained prominence in various scientific domains. However, due to their black-box nature, it is essential to establish trust in these models before accepting them as accurate. One promising strategy for assigning trust involves employing explanation techniques that elucidate the rationale behind a black-box model's predictions in a manner that humans can understand. However, assessing the degree of human interpretability of the rationale generated by such methods is a nontrivial challenge. In this work, we introduce interpretation entropy as a universal solution for assessing the degree of human interpretability associated with any linear model. Using this concept and drawing inspiration from classical thermodynamics, we present Thermodynamics-inspired Explainable Representations of AI and other black-box Paradigms (TERP), a method for generating accurate, and human-interpretable explanations for black-box predictions in a model-agnostic manner. To demonstrate the wide-ranging applicability of TERP, we successfully employ it to explain various black-box model architectures, including deep learning Autoencoders, Recurrent Neural Networks, and Convolutional Neural Networks, across diverse domains such as molecular simulations, text, and image classification.

Submitted: Jun 27, 2022