Paper ID: 2207.11720
Progressive Feature Learning for Realistic Cloth-Changing Gait Recognition
Xuqian Ren, Saihui Hou, Chunshui Cao, Xu Liu, Yongzhen Huang
Gait recognition is instrumental in crime prevention and social security, for it can be conducted at a long distance to figure out the identity of persons. However, existing datasets and methods cannot satisfactorily deal with the most challenging cloth-changing problem in practice. Specifically, the practical gait models are usually trained on automatically labeled data, in which the sequences' views and cloth conditions of each person have some restrictions. To be concrete, the cross-view sub-dataset only has normal walking condition without cloth-changing, while the cross-cloth sub-dataset has cloth-changing sequences but only in front views. As a result, the cloth-changing accuracy cannot meet practical requirements. In this work, we formulate the problem as Realistic Cloth-Changing Gait Recognition (abbreviated as RCC-GR) and we construct two benchmarks: CASIA-BN-RCC and OUMVLP-RCC, to simulate the above setting. Furthermore, we propose a new framework called Progressive Feature Learning that can be applied with off-the-shelf backbones to improve their performance in RCC-GR. Specifically, in our framework, we design Progressive Mapping and Progressive Uncertainty to extract cross-view features and then extract cross-cloth features on the basis. In this way, the feature from the cross-view sub-dataset can first dominate the feature space and relieve the uneven distribution caused by the adverse effect from the cross-cloth sub-dataset. The experiments on our benchmarks show that our framework can effectively improve recognition performance, especially in the cloth-changing conditions.
Submitted: Jul 24, 2022