Paper ID: 2208.11532
A novel method for data augmentation: Nine Dot Moving Least Square (ND-MLS)
Wen Yang, Rui Wang, Yanchao Zhang
Data augmentation greatly increases the amount of data obtained based on labeled data to save on expenses and labor for data collection and labeling. We present a new approach for data augmentation called nine-dot MLS (ND-MLS). This approach is proposed based on the idea of image defor-mation. Images are deformed based on control points, which are calculated by ND-MLS. The method can generate over 2000 images for one exist-ing dataset in a short time. To verify this data augmentation method, extensive tests were performed covering 3 main tasks of computer vision, namely, classification, detection and segmentation. The results show that 1) in classification, 10 images per category were used for training, and VGGNet can obtain 92% top-1 acc on the MNIST dataset of handwritten digits by ND-MLS. In the Omniglot dataset, the few-shot accuracy usu-ally decreases with the increase in character categories. However, the ND-MLS method has stable performance and obtains 96.5 top-1 acc in Res-Net on 100 different handwritten character classification tasks; 2) in segmentation, under the premise of only ten original images, DeepLab obtains 93.5%, 85%, and 73.3% m_IOU(10) on the bottle, horse, and grass test datasets, respectively, while the cat test dataset obtains 86.7% m_IOU(10) with the SegNet model; 3) with only 10 original images from each category in object detection, YOLO v4 obtains 100% and 97.2% bottle and horse detection, respectively, while the cat dataset obtains 93.6% with YOLO v3. In summary, ND-MLS can perform well on classification, object detec-tion, and semantic segmentation tasks by using only a few data.
Submitted: Aug 24, 2022