Paper ID: 2209.05423

Statistical Learning Theory for Control: A Finite Sample Perspective

Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, George J. Pappas

This tutorial survey provides an overview of recent non-asymptotic advances in statistical learning theory as relevant to control and system identification. While there has been substantial progress across all areas of control, the theory is most well-developed when it comes to linear system identification and learning for the linear quadratic regulator, which are the focus of this manuscript. From a theoretical perspective, much of the labor underlying these advances has been in adapting tools from modern high-dimensional statistics and learning theory. While highly relevant to control theorists interested in integrating tools from machine learning, the foundational material has not always been easily accessible. To remedy this, we provide a self-contained presentation of the relevant material, outlining all the key ideas and the technical machinery that underpin recent results. We also present a number of open problems and future directions.

Submitted: Sep 12, 2022