Paper ID: 2209.05512

Exploration and Coverage with Swarms of Settling Agents

Ori Rappel, Joseph Ben-Asher, Alfred Bruckstein

We consider several algorithms for exploring and filling an unknown, connected region, by simple, airborne agents. The agents are assumed to be identical, autonomous, anonymous and to have a finite amount of memory. The region is modeled as a connected sub-set of a regular grid composed of square cells. The algorithms described herein are suited for Micro Air Vehicles (MAV) since these air vehicles enable unobstructed views of the ground below and can move freely in space at various heights. The agents explore the region by applying various action-rules based on locally acquired information Some of them may settle in unoccupied cells as the exploration progresses. Settled agents become virtual pheromones for the exploration and coverage process, beacons that subsequently aid the remaining, and still exploring, mobile agents. We introduce a backward propagating information diffusion process as a way to implement a deterministic indicator of process termination and guide the mobile agents. For the proposed algorithms, complete covering of the graph in finite time is guaranteed when the size of the region is fixed. Bounds on the coverage times are also derived. Extensive simulation results exhibit good agreement with the theoretical predictions.

Submitted: Sep 12, 2022