Paper ID: 2209.13077

Accelerating the Genetic Algorithm for Large-scale Traveling Salesman Problems by Cooperative Coevolutionary Pointer Network with Reinforcement Learning

Rui Zhong, Enzhi Zhang, Masaharu Munetomo

In this paper, we propose a two-stage optimization strategy for solving the Large-scale Traveling Salesman Problems (LSTSPs) named CCPNRL-GA. First, we hypothesize that the participation of a well-performed individual as an elite can accelerate the convergence of optimization. Based on this hypothesis, in the first stage, we cluster the cities and decompose the LSTSPs into multiple subcomponents, and each subcomponent is optimized with a reusable Pointer Network (PtrNet). After subcomponents optimization, we combine all sub-tours to form a valid solution, this solution joins the second stage of optimization with GA. We validate the performance of our proposal on 10 LSTSPs and compare it with traditional EAs. Experimental results show that the participation of an elite individual can greatly accelerate the optimization of LSTSPs, and our proposal has broad prospects for dealing with LSTSPs.

Submitted: Sep 27, 2022