Paper ID: 2210.10321
Efficient Bi-Level Optimization for Recommendation Denoising
Zongwei Wang, Min Gao, Wentao Li, Junliang Yu, Linxin Guo, Hongzhi Yin
The acquisition of explicit user feedback (e.g., ratings) in real-world recommender systems is often hindered by the need for active user involvement. To mitigate this issue, implicit feedback (e.g., clicks) generated during user browsing is exploited as a viable substitute. However, implicit feedback possesses a high degree of noise, which significantly undermines recommendation quality. While many methods have been proposed to address this issue by assigning varying weights to implicit feedback, two shortcomings persist: (1) the weight calculation in these methods is iteration-independent, without considering the influence of weights in previous iterations, and (2) the weight calculation often relies on prior knowledge, which may not always be readily available or universally applicable. To overcome these two limitations, we model recommendation denoising as a bi-level optimization problem. The inner optimization aims to derive an effective model for the recommendation, as well as guiding the weight determination, thereby eliminating the need for prior knowledge. The outer optimization leverages gradients of the inner optimization and adjusts the weights in a manner considering the impact of previous weights. To efficiently solve this bi-level optimization problem, we employ a weight generator to avoid the storage of weights and a one-step gradient-matching-based loss to significantly reduce computational time. The experimental results on three benchmark datasets demonstrate that our proposed approach outperforms both state-of-the-art general and denoising recommendation models. The code is available at https://github.com/CoderWZW/BOD.
Submitted: Oct 19, 2022