Paper ID: 2210.11388

Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence

Chen Qian, Yuncheng Gao, Mingyang Han, Zi Wang, Dan Ruan, Yu Shen, Yaping Wu, Yirong Zhou, Chengyan Wang, Boyu Jiang, Ran Tao, Zhigang Wu, Jiazheng Wang, Liuhong Zhu, Yi Guo, Taishan Kang, Jianzhong Lin, Tao Gong, Chen Yang, Guoqiang Fei, Meijin Lin, Di Guo, Jianjun Zhou, Meiyun Wang, Xiaobo Qu

Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of in vivo water molecules, with significant clinical and research applications. Diffusion MRI (DWI) acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot, but suffers from inter-shot motion-induced artifacts. These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels. Thus, the potential of deep learning in multi-shot DWI reconstruction remains largely untapped. To break the training data bottleneck, here, we propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data by leveraging the physical diffusion model (magnitude synthesis) and inter-shot motion-induced phase model (motion phase synthesis). The network is trained only once with 100,000 synthetic samples, achieving encouraging results on multiple realistic in vivo data reconstructions. Advantages over conventional methods include: (a) Better motion artifact suppression and reconstruction stability; (b) Outstanding generalization to multi-scenario reconstructions, including multi-resolution, multi-b-value, multi-undersampling, multi-vendor, and multi-center; (c) Excellent clinical adaptability to patients with verifications by seven experienced doctors (p<0.001). In conclusion, PIDD presents a novel deep learning framework by exploiting the power of MRI physics, providing a cost-effective and explainable way to break the data bottleneck in deep learning medical imaging.

Submitted: Oct 20, 2022