Paper ID: 2210.14456
Question-Interlocutor Scope Realized Graph Modeling over Key Utterances for Dialogue Reading Comprehension
Jiangnan Li, Mo Yu, Fandong Meng, Zheng Lin, Peng Fu, Weiping Wang, Jie Zhou
In this work, we focus on dialogue reading comprehension (DRC), a task extracting answer spans for questions from dialogues. Dialogue context modeling in DRC is tricky due to complex speaker information and noisy dialogue context. To solve the two problems, previous research proposes two self-supervised tasks respectively: guessing who a randomly masked speaker is according to the dialogue and predicting which utterance in the dialogue contains the answer. Although these tasks are effective, there are still urging problems: (1) randomly masking speakers regardless of the question cannot map the speaker mentioned in the question to the corresponding speaker in the dialogue, and ignores the speaker-centric nature of utterances. This leads to wrong answer extraction from utterances in unrelated interlocutors' scopes; (2) the single utterance prediction, preferring utterances similar to the question, is limited in finding answer-contained utterances not similar to the question. To alleviate these problems, we first propose a new key utterances extracting method. It performs prediction on the unit formed by several contiguous utterances, which can realize more answer-contained utterances. Based on utterances in the extracted units, we then propose Question-Interlocutor Scope Realized Graph (QuISG) modeling. As a graph constructed on the text of utterances, QuISG additionally involves the question and question-mentioning speaker names as nodes. To realize interlocutor scopes, speakers in the dialogue are connected with the words in their corresponding utterances. Experiments on the benchmarks show that our method can achieve better and competitive results against previous works.
Submitted: Oct 26, 2022