Paper ID: 2210.16283
Boulders Identification on Small Bodies Under Varying Illumination Conditions
Mattia Pugliatti, Francesco Topputo
The capability to detect boulders on the surface of small bodies is beneficial for vision-based applications such as navigation and hazard detection during critical operations. This task is challenging due to the wide assortment of irregular shapes, the characteristics of the boulders population, and the rapid variability in the illumination conditions. The authors address this challenge by designing a multi-step training approach to develop a data-driven image processing pipeline to robustly detect and segment boulders scattered over the surface of a small body. Due to the limited availability of labeled image-mask pairs, the developed methodology is supported by two artificial environments designed in Blender specifically for this work. These are used to generate a large amount of synthetic image-label sets, which are made publicly available to the image processing community. The methodology presented addresses the challenges of varying illumination conditions, irregular shapes, fast training time, extensive exploration of the architecture design space, and domain gap between synthetic and real images from previously flown missions. The performance of the developed image processing pipeline is tested both on synthetic and real images, exhibiting good performances, and high generalization capabilities
Submitted: Oct 28, 2022