Paper ID: 2211.00086
Disentangled (Un)Controllable Features
Jacob E. Kooi, Mark Hoogendoorn, Vincent François-Lavet
In the context of MDPs with high-dimensional states, downstream tasks are predominantly applied on a compressed, low-dimensional representation of the original input space. A variety of learning objectives have therefore been used to attain useful representations. However, these representations usually lack interpretability of the different features. We present a novel approach that is able to disentangle latent features into a controllable and an uncontrollable partition. We illustrate that the resulting partitioned representations are easily interpretable on three types of environments and show that, in a distribution of procedurally generated maze environments, it is feasible to interpretably employ a planning algorithm in the isolated controllable latent partition.
Submitted: Oct 31, 2022