Paper ID: 2211.12475

The impact of moving expenses on social segregation: a simulation with RL and ABM

Xinyu Li

Over the past decades, breakthroughs such as Reinforcement Learning (RL) and Agent-based modeling (ABM) have made simulations of economic models feasible. Recently, there has been increasing interest in applying ABM to study the impact of residential preferences on neighborhood segregation in the Schelling Segregation Model. In this paper, RL is combined with ABM to simulate a modified Schelling Segregation model, which incorporates moving expenses as an input parameter. In particular, deep Q network (DQN) is adopted as RL agents' learning algorithm to simulate the behaviors of households and their preferences. This paper studies the impact of moving expenses on the overall segregation pattern and its role in social integration. A more comprehensive simulation of the segregation model is built for policymakers to forecast the potential consequences of their policies.

Submitted: Nov 22, 2022