Paper ID: 2211.13828

Joint segmentation and discontinuity-preserving deformable registration: Application to cardiac cine-MR images

Xiang Chen, Yan Xia, Nishant Ravikumar, Alejandro F Frangi

Medical image registration is a challenging task involving the estimation of spatial transformations to establish anatomical correspondence between pairs or groups of images. Recently, deep learning-based image registration methods have been widely explored, and demonstrated to enable fast and accurate image registration in a variety of applications. However, most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain, which is not always true, especially when registering images whose fields of view contain discontinuities at tissue/organ boundaries. In such scenarios, enforcing smooth, globally continuous deformation fields leads to incorrect/implausible registration results. We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields, leading to more accurate and realistic registration results. The proposed method leverages the complementary nature of image segmentation and registration and enables joint segmentation and pair-wise registration of images. A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images, while a discontinuity-preserving registration strategy is employed in the registration component of the network to ensure plausibility in the estimated deformation fields at tissue/organ interfaces. We evaluate our method on the task of intra-subject spatio-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences, and demonstrate that our method achieves significant improvements over the state-of-the-art for medical image registration, and produces high-quality segmentation masks for the regions of interest.

Submitted: Nov 24, 2022