Paper ID: 2212.07326

Mathematical model of printing-imaging channel for blind detection of fake copy detection patterns

Joakim Tutt, Olga Taran, Roman Chaban, Brian Pulfer, Yury Belousov, Taras Holotyak, Slava Voloshynovskiy

Nowadays, copy detection patterns (CDP) appear as a very promising anti-counterfeiting technology for physical object protection. However, the advent of deep learning as a powerful attacking tool has shown that the general authentication schemes are unable to compete and fail against such attacks. In this paper, we propose a new mathematical model of printing-imaging channel for the authentication of CDP together with a new detection scheme based on it. The results show that even deep learning created copy fakes unknown at the training stage can be reliably authenticated based on the proposed approach and using only digital references of CDP during authentication.

Submitted: Dec 14, 2022