Paper ID: 2301.06211
What artificial intelligence might teach us about the origin of human language
Alexander Kilpatrick
This study explores an interesting pattern emerging from research that combines artificial intelligence with sound symbolism. In these studies, supervised machine learning algorithms are trained to classify samples based on the sounds of referent names. Machine learning algorithms are efficient learners of sound symbolism, but they tend to bias one category over the other. The pattern is this: when a category arguably represents greater threat, the algorithms tend to overpredict to that category. A hypothesis, framed by error management theory, is presented that proposes that this may be evidence of an adaptation to preference cautious behaviour. This hypothesis is tested by constructing extreme gradient boosted (XGBoost) models using the sounds that make up the names of Chinese, Japanese and Korean Pokemon and observing classification error distribution.
Submitted: Jan 15, 2023