Paper ID: 2301.09759
Topic Ontologies for Arguments
Yamen Ajjour, Johannes Kiesel, Benno Stein, Martin Potthast
Many computational argumentation tasks, like stance classification, are topic-dependent: the effectiveness of approaches to these tasks significantly depends on whether the approaches were trained on arguments from the same topics as those they are tested on. So, which are these topics that researchers train approaches on? This paper contributes the first comprehensive survey of topic coverage, assessing 45 argument corpora. For the assessment, we take the first step towards building an argument topic ontology, consulting three diverse authoritative sources: the World Economic Forum, the Wikipedia list of controversial topics, and Debatepedia. Comparing the topic sets between the authoritative sources and corpora, our analysis shows that the corpora topics-which are mostly those frequently discussed in public online fora - are covered well by the sources. However, other topics from the sources are less extensively covered by the corpora of today, revealing interesting future directions for corpus construction.
Submitted: Jan 23, 2023