Paper ID: 2302.02651

1st Place Solution for PSG competition with ECCV'22 SenseHuman Workshop

Qixun Wang, Xiaofeng Guo, Haofan Wang

Panoptic Scene Graph (PSG) generation aims to generate scene graph representations based on panoptic segmentation instead of rigid bounding boxes. Existing PSG methods utilize one-stage paradigm which simultaneously generates scene graphs and predicts semantic segmentation masks or two-stage paradigm that first adopt an off-the-shelf panoptic segmentor, then pairwise relationship prediction between these predicted objects. One-stage approach despite having a simplified training paradigm, its segmentation results are usually under-satisfactory, while two-stage approach lacks global context and leads to low performance on relation prediction. To bridge this gap, in this paper, we propose GRNet, a Global Relation Network in two-stage paradigm, where the pre-extracted local object features and their corresponding masks are fed into a transformer with class embeddings. To handle relation ambiguity and predicate classification bias caused by long-tailed distribution, we formulate relation prediction in the second stage as a multi-class classification task with soft label. We conduct comprehensive experiments on OpenPSG dataset and achieve the state-of-art performance on the leadboard. We also show the effectiveness of our soft label strategy for long-tailed classes in ablation studies. Our code has been released in https://github.com/wangqixun/mfpsg.

Submitted: Feb 6, 2023