Paper ID: 2302.07654

Reinforcement Learning Based Power Grid Day-Ahead Planning and AI-Assisted Control

Anton R. Fuxjäger, Kristian Kozak, Matthias Dorfer, Patrick M. Blies, Marcel Wasserer

The ongoing transition to renewable energy is increasing the share of fluctuating power sources like wind and solar, raising power grid volatility and making grid operation increasingly complex and costly. In our prior work, we have introduced a congestion management approach consisting of a redispatching optimizer combined with a machine learning-based topology optimization agent. Compared to a typical redispatching-only agent, it was able to keep a simulated grid in operation longer while at the same time reducing operational cost. Our approach also ranked 1st in the L2RPN 2022 competition initiated by RTE, Europe's largest grid operator. The aim of this paper is to bring this promising technology closer to the real world of power grid operation. We deploy RL-based agents in two settings resembling established workflows, AI-assisted day-ahead planning and realtime control, in an attempt to show the benefits and caveats of this new technology. We then analyse congestion, redispatching and switching profiles, and elementary sensitivity analysis providing a glimpse of operation robustness. While there is still a long way to a real control room, we believe that this paper and the associated prototypes help to narrow the gap and pave the way for a safe deployment of RL agents in tomorrow's power grids.

Submitted: Feb 15, 2023