Paper ID: 2302.10082
UAVStereo: A Multiple Resolution Dataset for Stereo Matching in UAV Scenarios
Zhang Xiaoyi, Cao Xuefeng, Yu Anzhu, Yu Wenshuai, Li Zhenqi, Quan Yujun
Stereo matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, such as KITTI and Scene Flow. UAVs (Unmanned Aerial Vehicles) are commonly utilized for surface observation, and their captured images are frequently used for detailed 3D reconstruction due to high resolution and low-altitude acquisition. At present, the mainstream supervised learning network requires a significant amount of training data with ground-truth labels to learn model parameters. However, due to the scarcity of UAV stereo matching datasets, the learning-based network cannot be applied to UAV images. To facilitate further research, this paper proposes a novel pipeline to generate accurate and dense disparity maps using detailed meshes reconstructed by UAV images and LiDAR point clouds. Through the proposed pipeline, this paper constructs a multi-resolution UAV scenario dataset, called UAVStereo, with over 34k stereo image pairs covering 3 typical scenes. As far as we know, UAVStereo is the first stereo matching dataset of UAV low-altitude scenarios. The dataset includes synthetic and real stereo pairs to enable generalization from the synthetic domain to the real domain. Furthermore, our UAVStereo dataset provides multi-resolution and multi-scene images pairs to accommodate a variety of sensors and environments. In this paper, we evaluate traditional and state-of-the-art deep learning methods, highlighting their limitations in addressing challenges in UAV scenarios and offering suggestions for future research. The dataset is available at https://github.com/rebecca0011/UAVStereo.git
Submitted: Feb 20, 2023